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INTRODUCTION
Maintenance scheduling does not have to be based on "expert opinion".  By carefully recording failure data, or using
failure data from manufacturers, maintenance schedules can be economically optimized using statistical methods.
Three types of maintenance will be considered

1) Preventive maintenance,
2) Inspections, and
3) Predictive maintenance

Preventive maintenance is the standard "PM".  A PM is performed to prevent failures due to wear.  Examples are
changing hoses, changing belts, routine cleaning, etc.  Inspections are used to reduce the impact of failures that are not
catastrophic.  Consider the human body.  A cancer inspection has a cost (money, time, pain and embarrassment), but
the damage created by the cancer increases with time if not treated (the cost of a failure is proportional to time).
Predictive maintenance is used to prevent failures by detecting some type of warning, such as, increased vibration,
increased particle count in oil, or increased temperature.

CENSORED VERSUS COMPLETE DATA
If ten items are tested until all ten fail, this is a complete data set.  If the test is ended before all ten items fail, the items
that did not fail are "censored."

Consider the data in the table below.  Eight items were placed on test stands; three of the items failed, and five of the
items were removed from testing without failing.

Example of Censored Data
30 60 +
40 60 +
50 60 +

60 + 60 +

Obviously, the sample average and the sample standard deviation for the three failed items cannot be used to estimate
the parameters of the normal distribution in this case.  The sample average is (30+40+50)/3 = 40.  The time to fail for
each of the remaining five items is greater than 60; the true average is considerably greater than 40.

The data in the table above are right  censored.  An item is censored on the right if the failure time is not known, but it
is known that the item survived to a known time without failure.  If an item is known to be in a failed condition at a
specific time, but the exact failure time is not known, this is left censoring

Single censoring occurs when there is only one censoring point.  If 100 transistors are placed on test stands and the test
is terminated after 1000 hours, there is a single censoring point at 1000 hours.  If 20 transistors were removed without
failure after 1000 hours of testing and another 15 transistors were removed without failure after 1200 hours of testing,
there are two censoring points, and the resulting data are multiply censored.  If exact failure times are not known, but
the numbers of failures in a time interval are recorded, this is interval or grouped data.

THE WEIBULL DISTRIBUTION
The Weibull distribution is a continuous distribution that was publicized by Waloddi Weibull in 1951.

Although initially met with skepticism, it has become widely used, especially in the reliability field.  The Weibull
distribution's popularity resulted from its ability to be used with small sample sizes and its flexibility.  In addition to
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being the most useful density function for reliability calculations, analysis of the Weibull distribution provides the
information needed for troubleshooting, classifying failure types, scheduling preventive maintenance and scheduling
inspections.  The Weibull probability density function is
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where β = the shape parameter,
θ = the scale parameter, and
δ = the location parameter.

Beta θ, and δ are continuous.  The acceptable ranges for these variables are
0 < β < ∞ ,
0 < θ < ∞, and
-∞ < δ < ∞.

The estimation of these parameters is not straightforward, and special techniques such as probability plotting, hazard
plotting, or maximum likelihood estimation are required.

EFFECTS OF THE SHAPE PARAMETER
By altering the shape parameter, β, the Weibull probability density function takes a variety of shapes.  This is
demonstrated in Figure 1.
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Figure 1.   Weibull probability density functions.
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Note that several of the probability density functions displayed in Figure 1 look familiar.  The Weibull distribution can
be used in a wide variety of situations and dependent on the value of β, is equal to or can approximate several other
distributions.  For example, if

β = 1, the Weibull distribution is identical to the exponential distribution,
β = 2, the Weibull distribution is identical to the Rayleigh distribution,
β = 2.5, the Weibull distribution approximates the lognormal distribution,
β = 3.6, the Weibull distribution approximates the normal distribution. and
β = 5, the Weibull distribution approximates the peaked normal distribution.

Because of this flexibility, there are few observed failure rates that cannot be accurately modeled by the Weibull
distribution.  Some specific cases are

• the breaking strength of components or the stress required to fatigue metals,
• the time to fail for electronic components,
• the time to fail for items that wear out, such as automobile tires, and
• systems that fail when the weakest component in the system fails.

METHODS OF PARAMETER ESTIMATION
The four most widely used methods of parameter estimation are:

1) Maximum Likelihood Estimation,
2) Moment Estimation,
3) Probability Plotting, and
4) Hazard Plotting.

MAXIMUM LIKELIHOOD ESTIMATION
Maximum likelihood is the most widely used method for generating estimators.  It is based on the principle of
determining the parameter(s) value(s) that maximize(s) the probability of obtaining the sample data.

The likelihood function for a given distribution is a representation of the probability that the sample data of obtaining
the sample values.  Let x x xn1 2, ,...,  be independent, random variables from the probability density function f x( , )θ ,

where θ is the single distribution parameter.  Then

L x x x f x f x f xn n( , ,..., ; ) ( , ) ( , )... ( , )1 2 1 2θ θ θ θ=

is the joint distribution of the random variables, or the likelihood function.  The maximum likelihood estimate, �θ ,
maximizes the likelihood function.  This estimate is asymptotically normal.  Often the natural logarithm of the
likelihood function is maximized to simplify computations.

MOMENT ESTIMATION
Moment estimation is based on the concept of matching the moments of the sample data with the moments defined by
the distribution of interest and its parameters.  For example, when estimating the parameters of the two parameter
Weibull distribution, the first and second moments from the sample data, the sample mean and the sample variance,
would be equated to the expressions
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PROBABILITY PLOTTING
Probability plotting is a graphical method of parameter estimation.  The cumulative distribution function is linearized,
usually by a logarithmic transformation, and plotted.  The slope and the intercept of the plot provide the information
needed to estimate the parameters of the distribution of interest.  The median rank is used to estimate the cumulative
distribution function, and ranks at user input levels are used to provide confidence intervals for reliability.  If manually
constructing a probability plot, distribution specific hazard paper is required.  By using probability paper, the failure
times and cumulative distribution function estimates can be plotted directly.  With the power of personal computers,
specialized graph paper is no longer needed, as the necessary transformations can be made quickly and easily.

HAZARD PLOTTING
Hazard plotting is a graphical method of parameter estimation.  The cumulative hazard function is linearized, usually
by a logarithmic transformation, and plotted.  The slope and the intercept of the plot provide the information needed to
estimate the parameters of the distribution of interest.  If manually constructing a hazard plot, distribution specific
hazard paper is required.  By using hazard paper, the failure times and cumulative hazard function estimates can be
plotted directly.  With the power of personal computers, specialized graph paper is no longer needed, as the necessary
transformations can be made quickly and easily.

PREVENTIVE MAINTENANCE
In some cases, it is possible to prevent failures with preventive maintenance.  The question is to determine if preventive
maintenance is applicable, and if so, how often should it be scheduled.  Referring to Figure 2, failures can be grouped
into 3 categories based on the behavior of the failure rate.  Infant mortality  failures are characterized by a decreasing
failure rate.  The hazard function (failure rate) of the Weibull distribution is decreasing if the shape parameter, β, is
less than 1.0.  Random failures exhibit a constant failure rate; the shape parameter of the Weibull distribution is equal
to 1.0.  Wear-out failures have an increasing failure rate; the shape parameter of the Weibull distribution is greater
than 1.0.
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Figure 2.   The bathtub curve.

Infant mortality failures are premature failures that can often be prevented by management.  If infant mortality failures
cannot be prevented, a burn-in procedure can be implemented to eliminate failures before the product is shipped.
Preventive maintenance is not applicable for an item with a decreasing failure rate.  Performing preventive
maintenance restores the system to its initial state which has a higher failure rate; preventive maintenance increases the
number of failures in this case.

Some causes of infant mortality failures are
• Improper use • Improper installation
• Inadequate materials • Poor quality control
• Over-stressed components • Power surges
• Improper setup • Handling damage

Random failures cannot be prevented with preventive maintenance.  The failure rate is constant, so preventive
maintenance has no affect on failures.  Reliability can be increased by redesigning the item, or in some cases, by
implementing an inspection program.

Wear-out failures can be prevented with preventive maintenance.  The failure rate is increasing with time, so
preventive maintenance restores the system to a state with a lower failure rate.  The question is how often should
preventive maintenance be scheduled.

The time to fail for an item is variable, and can be represented by a probability distribution, f x( ).  Referring to Figure
3, the cost of failures per unit time decreases as preventive maintenance is done more often, but the cost of preventive
maintenance per unit time increases.  There exists a point where the total cost of failures and preventive maintenance
per unit time is at a minimum; the optimum schedule for preventive maintenance.
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Figure 3.   Optimum schedule for preventive maintenance.

The optimum time between maintenance actions is found by minimizing the total cost per unit time.
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where Cp  is the cost of preventive maintenance,

Cf  is the cost of a failure, and

T is the time between preventive maintenance actions.

Minimizing Equation 2 is tedious, and numerical routines are usually required.  Dodson (1994), developed a tabular
solution for this problem given the following assumptions.

1.  The time to fail follows a Weibull distribution.
2.  Preventive maintenance is performed on an item at time T at a cost of Cp .

3.  If the item fails before time = T, a failure cost of Cf  is incurred.

4.  Each time preventive maintenance in performed, the item is returned to its initial state; that is, the item is
"as good as new."

The optimum time between preventive maintenance actions is
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T m= +θ δ (3)

where     m is a function of the ratio of the failure cost to the preventive maintenance cost and the value of the shape
parameter, and is given in Table 1.

θ is the scale parameter of the Weibull distribution, and
δ is the location parameter of the Weibull distribution.
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Table 0.   Values of m.
ß

Cf/Cp 1.5 2.0 2.5 3.0 4.0 5.0 7.0 10.0

2.0 2.229 1.091 0.883 0.810 0.766 0.761 0.775 0.803

2.2 1.830 0.981 0.816 0.760 0.731 0.733 0.755 0.788

2.4 1.579 0.899 0.764 0.720 0.702 0.711 0.738 0.777

2.6 1.401 0.834 0.722 0.688 0.679 0.692 0.725 0.766

2.8 1.265 0.782 0.687 0.660 0.659 0.675 0.713 0.758

3.0 1.158 0.738 0.657 0.637 0.642 0.661 0.702 0.749

3.3 1.033 0.684 0.620 0.607 0.619 0.642 0.687 0.739

3.6 0.937 0.641 0.589 0.582 0.600 0.627 0.676 0.730

4.0 0.839 0.594 0.555 0.554 0.579 0.609 0.662 0.719

4.5 0.746 0.547 0.521 0.526 0.557 0.591 0.648 0.708

5 0.676 0.511 0.493 0.503 0.538 0.575 0.635 0.699

6 0.574 0.455 0.450 0.466 0.509 0.550 0.615 0.683

7 0.503 0.414 0.418 0.438 0.486 0.530 0.600 0.671

8 0.451 0.382 0.392 0.416 0.468 0.514 0.587 0.661

9 0.411 0.358 0.372 0.398 0.452 0.500 0.575 0.652

10 0.378 0.337 0.355 0.382 0.439 0.488 0.566 0.645

12 0.329 0.304 0.327 0.357 0.417 0.469 0.550 0.632

14 0.293 0.279 0.306 0.338 0.400 0.454 0.537 0.621

16 0.266 0.260 0.288 0.323 0.386 0.441 0.526 0.613

18 0.244 0.244 0.274 0.309 0.374 0.430 0.517 0.605

20 0.226 0.230 0.263 0.298 0.364 0.421 0.508 0.598

25 0.193 0.205 0.239 0.275 0.343 0.402 0.492 0.584

30 0.170 0.186 0.222 0.258 0.328 0.387 0.478 0.573

35 0.152 0.172 0.207 0.245 0.315 0.374 0.468 0.564

40 0.139 0.160 0.197 0.234 0.304 0.364 0.459 0.557

45 0.128 0.151 0.187 0.225 0.295 0.356 0.451 0.550

50 0.119 0.143 0.179 0.217 0.288 0.348 0.444 0.544

60 0.105 0.130 0.167 0.204 0.274 0.335 0.432 0.534

70 0.095 0.120 0.157 0.193 0.264 0.325 0.422 0.526

80 0.087 0.112 0.148 0.185 0.255 0.316 0.415 0.518

90 0.080 0.106 0.141 0.177 0.248 0.309 0.407 0.513

100 0.074 0.101 0.135 0.172 0.241 0.303 0.402 0.507

150 0.057 0.082 0.115 0.150 0.217 0.278 0.379 0.487

200 0.047 0.071 0.103 0.136 0.203 0.263 0.363 0.472

300 0.035 0.058 0.087 0.119 0.182 0.243 0.343 0.454

500 0.025 0.045 0.071 0.100 0.161 0.219 0.319 0.431

1000 0.016 0.032 0.054 0.079 0.135 0.190 0.288 0.403
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Example 1
The cost of failure for an item is $1000.  The cost of preventive maintenance for this item is $25.  The following
Weibull distribution parameters were determined from time to fail data: β =2.5, θ = 181 days, δ = 0.  How often should
preventive maintenance be done?

Solution
The ratio of failure cost to PM cost is

C

C
f

p

= =1000

25
40

Entering Table 0 with this ratio and a shape parameter of 2.5, give 0.197 for the value of m.

A PM should be done every

( )( )T = + =0197 181 0 35657. .  days

This is shown graphically in Figure 4.
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Figure 4.   Solution to Example 1.

Example 2
Repeat Example 1 with the following Weibull distribution parameters: β =0.8, θ = 181 days, δ = 0.
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Solution
When the shape parameter of the Weibull distribution is less than or equal to 1.0, the optimum solution is to do no
preventive maintenance.

INSPECTIONS (CANCER SCREENING)
In some cases it is impossible to determine if a defect exists without inspection.  This may be a defect causing scrap
production or a defect causing machinery damage.  The problem is to determine how often inspections should take
place.  There is an inspection cost, but the cost of an undetected defect in the process increases with time.

This is the same theory used to determine how often to screen people for cancer.  A patient must visit the doctor to
determine if there is a defect in the machinery (cancer in the patient).  The longer the defect exists without detection,
the higher the cost (the longer the cancer goes untreated, the more difficult it is to cure).

The assumptions for this routine are:
1)  The time to fail follows a Weibull distribution.
2)  The cost of a defect in the process increases linearly with time.
3)  Inspections are 100% accurate at detecting a defect.

The output is an inspection schedule.  The time between successive inspections will not be equal as in the case of
preventive maintenance.  If the failure rate is increasing (the shape parameter of the Weibull distribution is greater than
1), the time between successive inspections will decrease.  This is similar to screening for cancer; the initial inspection
may not take place until the person is 40 or 50 years old, and then as the person continues to age inspections occur
more and more frequently.  If the failure rate is decreasing (the shape parameter of the Weibull distribution is less than
1), the time between successive inspections will increase.  If the failure rate is constant (the shape parameter of the
Weibull distribution is equal to 1), the time between successive inspections will be constant.

The optimum length of time until the next inspection should take place, ∆, is found by minimizing the steady state cost

for a given time period ( )t ti i, + ∆  in terms of ∆.  The steady state cost is
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where Ci  is the cost of an inspection,

Cd  is the cost of a defect per unit time, and

f x( ) is the probability density function representing the time between defects.

Example 3
In rolling mills, rolls are changed periodically.  In some cases, they are changed because the product being rolled is
changed, and in some cases they develop roll marks.  If a roll mark develops, every coil rolled is scrap.  The only way
to detect the mark is by inspection.  This inspection causes scrap and downtime.  Using the failure data in the table
below, assuming an inspection costs $5000, and a scrap coil costs $8000, determine when the next 3 inspections should
take place after new rolls are installed.
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Table 2.  Coils until roll mark develops *.
1 2 8 20 + 20 + 20 + 20 +

1 2 8 20 + 20 + 20 + 20 +

1 2 8 20 + 20 + 20 + 20 +

1 2 9 20 + 20 + 20 + 20 +

1 2 10 20 + 20 + 20 + 20 +

1 4 12 20 + 20 + 20 + 20 +

1 5 17 20 + 20 + 20 + 20 +

1 5 18 20 + 20 + 20 + 20 +

1 5 20 + 20 + 20 + 20 + 20 +

2 8 20 + 20 + 20 + 20 + 20 +

* A + following an entry indicates that rolls were changed without failure.

SOLUTION
The MLE parameter estimates are

β (shape parameter) = 0.618
θ (scale parameter) = 55.49

The optimum time for the first 3 inspections are
1st inspection 7.115 coils →   7 coils
2nd inspection 15.56 coils → 15 coils
3rd inspection 24.86 coils → 25 coils

Note that the time between each successive inspection increases.

PREDICTIVE MAINTENANCE
Predictive  maintenance tools, such as vibration analysis and oil analysis, are increasingly being used to prevent
machinery failures and thus reduce operating expenses.  An issue that has not received enough attention is how often to
schedule inspections.  Referring to Figure 5, if inspections are done too frequently, inspection costs are greater than
savings costs.  If inspections are scheduled too far apart, the opportunity savings of preventing failures is being
underutilized.
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Figure 5.   Optimum predictive maintenance schedule.

Referring to Figure 6, there are three possibilities when an inspection takes place:
1)  No problems are found - zone A
2)  An  impending  failure is discovered - zone B
3)  The machinery failed before an inspection took place - zone C.
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INSPECT IN ZONE A - INCUR INSPECTION COST

INSPECT IN ZONE B - INCUR INSPECTION COST
PREVENT FAILURE COST

INSPECT IN ZONE C - NO IMPACT
SAME AS RUN TO FAILURE

Figure 6.  Possibilities when an inspection takes place.

Zone B, when an impending failure is discovered, will be referred to as the lapse zone.  The length of this zone is
variable and is represented by h(x).  The time to fail, which is also variable, is defined as f(t).  The length of time before
an impending failure may be discovered is
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g z f t h x( ) ( ) ( )= − (5)

If an inspection takes place in zone A, the cost of an inspection has been incurred and no savings have been realized.  If
an inspection takes place in zone B, the cost of an inspection has been incurred and the cost of a failure has been
prevented.  An inspection cannot take place in zone C, the system has failed.  Using the following definitions

A = cost per inspection
B = cost per failure
Ti = the time of inspection i
M = the average time to fail given a failure and survival to the previous inspection time.

The total savings per unit time is

S
P t H A P H t T B A

P t T M P t T T

i

i i i
= < − + < < −

> + <
( )( ) ( )( )

( ) ( )

0 0

(6)

P(t<H0) is the probability that the inspection takes place in zone A, P(H0<t<Ti) is the probability the inspection takes
place in zone B.  P(t>Ti) is the probability of a failure before an inspection takes place (zone C).  The problem is to
determine the values of Ti  (T1 being the time for the first inspection, T2 being the time of the second inspection, etc.)
that minimizes the total savings per unit time.  It is assumed that the system is restored to a state that is "as good as
new" following a failure or the detection of an impending failure.

Determining the probabilities above can be difficult if  f(t) and h(x) are not normally distributed.  However, making this
assumption would limit the applications of a solution since the most common distribution for failure times is the
Weibull distribution.  A solution for T1 can be found with less difficulty than solutions for T2, T3, etc.  After the first
inspection has taken place, all probabilities must be computed with the knowledge of system survival until time = Ti-1.

EXAMPLE 4
Consider the case where an inspection costs $50 (A=50), a failure costs $900 (B=900), the time to fail follows the
Weibull distribution with a shape parameter of 1, a scale parameter of 200 days, and a location parameter of 0.  The
lapse distribution is Weibull with a shape parameter of 5, a scale parameter of 30, and a location parameter of 10.

Solution
Since the shape parameter of the Weibull distribution is equal to 1.0 for the time to fail distribution,
the time between each successive inspection will be constant.  The optimum point is shown
graphically in the figure below.
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EXAMPLE 5
Suppose the shape parameter for the time to fail distribution in Example 4 were changed from 1.0 (a constant failure
rate) to 2.5 (an increasing failure rate).  The optimum time for the first inspection is now 120 days as opposed to 36
days when the failure rate was constant.  This increase is because the variance of the time to fail distribution is less for
this example than for Example 4.   The variance of the Weibull distribution decreases as the shape parameter increases.
If there is no failure or detection of an impending failure, the optimum time for the second inspection is 152 days, and
the third 182 days.  Notice that the time between each successive inspection is decreasing.

CONCLUSIONS
Preventive maintenance, inspections, and predictive maintenance are all tools that can be used to reduce maintenance
expenses.  Like any tool, maximum gain is obtained by using these tools correctly.  Significant financial gains can be
made by collecting failure data and optimizing maintenance schedules.
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